Landslides, Ice Quakes, Earthquakes: A Thermodynamic Approach to Surface Instabilities
نویسندگان
چکیده
The total rate of rock deformation results from competing deformation processes, including ductile and brittle mechanisms. Particular deformation styles arise from the dominance of certain mechanisms over others at different ambient conditions. Surprisingly, rates of deformation in naturally deformed rocks are found to cluster around two extremes, representing coseismic slip rates or viscous creep rates. Classical rock mechanics is traditionally used to interpret these instabilities. These approaches consider the principle of conservation of energy. We propose to go one step further and introduce a nonlinear far-from-equilibrium thermodynamic approach in which the central and explicit role of entropy controls instabilities. We also show how this quantity might be calculated for complex crustal systems. This approach provides strain-rate partitioning for natural deformation processes occurring at rates in the order of 10 to 10 s. We discuss these processes using examples of landslides and ice quakes or glacial surges. We will then illustrate how the mechanical mechanisms derived from these near-surface processes can be applied to deformation near the base of the seismogenic crust, especially to the phenomenon of slow earthquakes.
منابع مشابه
Seismic Triggering Mechanisms of Large–scale Landslides, Valles Marineris
Large–scale landslides in Valles Marineris wallrock are analyzed in order to determine what triggering mechanisms caused the landslides. These landslides occur in the locality of large faults, and therefore it is hypothesized that the landslides are the result of marsquakes triggering slope instability. This work confirms that landslides occur where the seismic hazard map forecasts highest seis...
متن کاملNucleation and seismic tremor associated with the glacial earthquakes of Whillans Ice Stream, Antarctica
[1] The ability to monitor transient motion along faults is critical to improving our ability to understand many natural phenomena such as landslides and earthquakes. Here, we usedata from a GPS and seismometer network that were deployed to monitor the regularly repeating glacial earthquakes of Whillans Ice Stream, West Antarctica to show that a unique pattern of precursory slip precedes comple...
متن کاملSome Aspects of Energy Balance and Tsunami Generation by Earthquakes and Landslides
Tsunamis are generated by displacement or motion of large volumes of water. While there are several documented cases of tsunami generation by volcanic eruptions and landslides, most observed tsunamis are attributed to earthquakes. Kinematic models of tsunami generation by earthquakes — where specified fault size and slip determine seafloor and sea-surface vertical motion — quantitatively explai...
متن کاملRecent 2017-2018 Seismicity and News Seismic Hazard Zoning of Iran
On November 12, 2017, at 18:18 UTC, a major earthquake with moment magnitude Mw7.3 struck the Kermanshah province of Iran, causing extended damage and casualties. Thus, we explore seismicity preceding this earthquake, with the aim to understand whether the information from past events could provide some insights about the occurrence of this and other future large earthquakes. Taking into accou...
متن کاملLandslides in Valles Marineris (Mars) A possible role of basal lubrication by sub-surface ice
There is much interest on the occurrence of water and ice in the past history of Mars. Because landslides on Mars are much better conserved than their terrestrial counterparts, a physical examination and morphological analysis can reveal significant details on the depositional environment at the instant of failure. A study of the landslides in Valles Marineris based on their physical aspect is ...
متن کامل